Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivan Potočňák, ${ }^{\text {a* }}$ Martina Pohlová, ${ }^{\text {a }}$ Christoph Wagner ${ }^{\text {b }}$ and Lothar Jäger ${ }^{\text {b }}$

${ }^{\text {ap P. J. Šafárik University, Institute of Chemistry, }}$ Department of Inorganic Chemistry, Moyzesova 11, SK-04154 Košice, Slovakia, and ${ }^{\text {b }}$ Institute of Inorganic Chemistry, Martin-Luther-University, Halle-Wittenberg, D-06099 Halle, Germany

Correspondence e-mail:
potocnak@kosice.upjs.sk

Key indicators

Single-crystal X-ray study
$T=220 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
ωR factor $=0.152$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(1,10-phenanthroline)copper(II) tricyanomethanide

The crystal structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right]_{2}$ is composed of discrete $\left[\mathrm{Cu}(\text { phen })_{3}\right]^{2+}$ cations (phen is 1,10 -phenanthroline) and $\left[\mathrm{C}(\mathrm{CN})_{3}\right]^{-}$anions. The $\mathrm{Cu}^{\mathrm{II}}$ atom is octahedrally coordinated by the three phen ligands. As a consequence of the Jahn-Teller effect, the two axial $\mathrm{Cu}-\mathrm{N}$ bonds of 2.219 (3) and 2.238 (3) \AA are longer than the equatorial $\mathrm{Cu}-\mathrm{N}$ bonds, which are in trans positions, paired in two couples of almost equal distance $[2.066$ (3)/2.050 (3) and 2.121 (3)/2.121 (3) \AA A].

Comment

The structure of the five-coordinate $\mathrm{Cu}^{\text {II }}$ complex $\left[\mathrm{Cu}(L)_{2} \mathrm{C}(\mathrm{CN})_{3}\right] \mathrm{C}(\mathrm{CN})_{3} \quad\left(L=2,2^{\prime}\right.$-bipyridine) is known (Potočňák et al., 1997). During an attempt to prepare the analogous complex with $L=1,10$-phenanthroline (phen), the hexacoordinate $\mathrm{Cu}^{\text {II }}$ complex $\left[\mathrm{Cu}(\text { phen })_{3}\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right]_{2}$, the title complex, (I), was isolated. We present here the structure of (I).

(I)

Experimental

Crystals of (I) were prepared by mixing a 0.1 M aqueous solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(5 \mathrm{ml})$ with a 0.1 M ethanol solution of phen $(10 \mathrm{ml})$. To the resulting blue solution, a 0.1 M aqueous ethanol solution of $\mathrm{KC}(\mathrm{CN})_{3}(5 \mathrm{ml})$ was added (all solutions were warmed before mixing). Light-green dendritic crystals appeared within one week. The crystals were filtered off and dissolved in a warm mixture of ethanol and water (1:1). After one week, light-green prismatic crystals of (I) were filtered off and dried in air.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left(\mathrm{C}_{4} \mathrm{~N}_{3}\right)_{2}$	$D_{x}=1.391 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=784.29$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 8000
$a=9.3854(12) \AA$	reflections
$b=31.179(5) \AA$	$\theta=1.7-26.0^{\circ}$
$c=12.7972(18) \AA$	$\mu=0.63 \mathrm{~mm}^{-1}$
$\beta=91.084(16)^{\circ}$	$T=220(1) \mathrm{K}$
$V=3744.2(9) \AA^{3}$	Prism, light green
$Z=4$	$0.30 \times 0.21 \times 0.09 \mathrm{~mm}$

Received 17 September 2002 Accepted 25 September 2002 Online 30 September 2002

Low-dimensional compounds containing cyano groups. V.

Data collection

Stoe IPDS diffractometer φ scans
Absorption correction: numerical
(FACE in IPDS; Stoe \& Cie, 1999)
$T_{\text {min }}=0.885, T_{\text {max }}=0.949$
19431 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.152$
$S=0.82$
6872 reflections
514 parameters
H -atom parameters constrained

6872 independent reflections
4834 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-11 \rightarrow 10$
$k=-38 \rightarrow 38$
$l=-15 \rightarrow 15$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 60$	$2.050(3)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.406(7)$
$\mathrm{Cu} 1-\mathrm{N} 40$	$2.066(3)$	$\mathrm{C} 3-\mathrm{N} 3$	$1.158(7)$
$\mathrm{Cu} 1-\mathrm{N} 50$	$2.121(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.408(7)$
$\mathrm{Cu} 1-\mathrm{N} 20$	$2.121(3)$	$\mathrm{C} 5-\mathrm{N} 5$	$1.162(6)$
$\mathrm{Cu} 1-\mathrm{N} 10$	$2.219(3)$	$\mathrm{C} 5-\mathrm{C} 8$	$1.409(6)$
$\mathrm{Cu} 1-\mathrm{N} 30$	$2.238(3)$	$\mathrm{C} 6-\mathrm{N} 6$	$1.144(6)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.143(7)$	$\mathrm{C} 6-\mathrm{C} 8$	$1.421(6)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.395(7)$	$\mathrm{C} 7-\mathrm{N} 7$	$1.146(6)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.173(6)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.413(6)$
$\mathrm{N} 60-\mathrm{Cu} 1-\mathrm{N} 40$	$171.67(11)$	$\mathrm{N} 10-\mathrm{Cu} 1-\mathrm{N} 30$	$171.35(11)$
$\mathrm{N} 60-\mathrm{Cu} 1-\mathrm{N} 50$	$80.36(12)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4$	$178.9(10)$
$\mathrm{N} 40-\mathrm{Cu} 1-\mathrm{N} 50$	$95.79(11)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 4$	$179.5(6)$
N60-Cu1-N20	$94.03(11)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4$	$178.5(7)$
N40-Cu1-N20	$90.50(11)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	$119.5(5)$
N50-Cu1-N20	$172.01(11)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 2$	$121.2(5)$
N60-Cu1-N10	$93.31(11)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 2$	$119.2(4)$
N40-Cu1-N10	$94.49(11)$	$\mathrm{N} 5-\mathrm{C} 5-\mathrm{C} 8$	$177.9(5)$
N50-Cu1-N10	$96.84(11)$	$\mathrm{N} 6-\mathrm{C} 6-\mathrm{C} 8$	$178.6(6)$
N20-Cu1-N10	$77.71(10)$	$\mathrm{N} 7-\mathrm{C} 7-\mathrm{C} 8$	$178.7(6)$
N60-Cu1-N30	$94.49(11)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 5$	$119.6(4)$
N40-Cu1-N30	$77.94(12)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 6$	$119.9(4)$
N50-Cu1-N30	$88.17(11)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 6$	$120.5(4)$
$\mathrm{N} 20-\mathrm{Cu} 1-\mathrm{N} 30$	$97.98(11)$		

The H -atom positions were placed in calculated positions and refined riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The asymmetric unit of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have ben omitted for clarity.

Data collection: EXPOSE in IPDS (Stoe \& Cie, 1999); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Crystal Impact, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by the Grant Agency VEGA (grant No. 1/7426/20).

References

Crystal Impact (1999). DIAMOND. Release 2.1.e. Crystal Impact, D-53002 Bonn, Germany.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1997). Acta Cryst. C53, 1215-1218.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie. (1999). IPDS. Version 2.90. Stoe \& Cie, Darmstadt, Germany.

